Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle.

نویسندگان

  • Varuna C Banduseela
  • Yi-Wen Chen
  • Hanna Göransson Kultima
  • Holly S Norman
  • Sudhakar Aare
  • Peter Radell
  • Lars I Eriksson
  • Eric P Hoffman
  • Lars Larsson
چکیده

Critical illness myopathy (CIM) is characterized by a preferential loss of the motor protein myosin, muscle wasting, and impaired muscle function in critically ill intensive care unit (ICU) patients. CIM is associated with severe morbidity and mortality and has a significant negative socioeconomic effect. Neuromuscular blocking agents, corticosteroids, sepsis, mechanical ventilation, and immobilization have been implicated as important risk factors, but the causal relationship between CIM and the risk factors has not been established. A porcine ICU model has been used to determine the immediate molecular and cellular cascades that may contribute to the pathogenesis prior to myosin loss and extensive muscle wasting. Expression profiles have been compared between pigs exposed to the ICU interventions, i.e., mechanically ventilated, sedated, and immobilized for 5 days, with pigs exposed to critical illness interventions, i.e., neuromuscular blocking agents, corticosteroids, and induced sepsis in addition to the ICU interventions for 5 days. Impaired autophagy as well as impaired chaperone expression and protein synthesis were observed in the skeletal muscle in response to critical illness interventions. A novel finding in this study is impaired core autophagy machinery in response to critical illness interventions, which when in concert with downregulated chaperone expression and protein synthesis may collectively affect the proteostasis in skeletal muscle and may exacerbate the disease progression in CIM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular And Cellular Networks in Critical Illness Associated Muscle Weakness: Skeletal Muscle Proteostasis in the Intensive Care Unit

Banduseela, V. C. 2012. Molecular And Cellular Networks in Critical Illness Associated Muscle Weakness: Skeletal Muscle Proteostasis in the Intensive Care Unit. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 841. 63 pp. Uppsala. ISBN 978-91-554-8542-9. Critical illness associated muscle weakness and muscle dysfunction in int...

متن کامل

Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols

Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...

متن کامل

The Effect of Resistance and Progressive Training on HSP 70 and Glucose

Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...

متن کامل

The Effect of Resistance and Progressive Training on HSP 70 and Glucose

Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...

متن کامل

Comparing the effects of endurance and resistance trainings on gene expression involved in protein synthesis and degradation signaling pathways of Wistar rat soleus muscle

Background: Skeletal muscle mass, which is regulated by a balance between muscle protein synthesis and degradation, is an important factor for movement to meet everyday needs, especially in pathological conditions and aging. The purpose of the present investigation was to compare the alterations of the gene expression involved in muscle protein synthesis and degradation signaling pathways induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological genomics

دوره 45 12  شماره 

صفحات  -

تاریخ انتشار 2013